
Princeton Univ. F‘22 COS 521: Advanced Algorithm Design

Lecture 16: Combinatorial Auctions

Lecturer: Matt Weinberg Last updated: November 3, 2022

Lectures Notes sourced from the Chapter 11 of the AGT Book (Nisan,
Roughgarden, Tardos, Vazirani), cited at end. I strongly recommend visit-
ing the cited reference for details, but these notes are available to recall what
was covered in lecture.

Note: These notes were originally intended for two lectures, and are now condensed into
one. In lecture, we will typically go over VCG briefly and focus on the Lavi/Swamy reduc-
tion and the . Time-permitting, we’ll go over the MIR algorithm for subadditive buyers and
the approximation algorithm for XOS, but most likely these will be independent reading
for students who are interested in the material.

In this lecture, we’ll take a game-theoretic look at algorithmic problems. Specifically,
we’ll want to consider optimization problems where the input itself has a stake in the output
selected. Consider the following problem, referred to as combinatorial auctions. There are
n bidders and m items. Each bidder has a valuation function for the m items vi(·). That is,
player i receives value vi(S) for receiving the set S of items. Your optimization problem is
to find an allocation, that is a partition of [m] into S1, . . . , Sn so as to maximize the social
welfare,

∑
i vi(Si).

This is already an interesting algorithmic problem, and we’ll see more of it this lecture.
But we’ll also want to focus on the following: what if you don’t know each player’s valuation
function, but you rely on them to provide you information. Then every algorithm you design
imposes a game: depending on the behavior (information provided by the other players),
and your own behavior (information you choose to provide), you get some payoff (your
value for the output of the algorithm). This adds a new angle to the problem that we must
consider. In general, we might need to use payments to address this problem.

Example 1 (Single-Item Auction). Consider the case where m = 1. This is an easy
algorithmic problem: everyone just has a value vi for getting the item, and you need to
find arg maxi{vi} and give them the item. However, if this is your algorithm, it induces a
game among the bidders where the only equilibrium is to report the highest allowable value
(reporting a higher value makes you more likely to get the item and doesn’t cost anything).
So even though you can easily find the maximum value amongst the provided input, the
provided input is garbage and doesn’t tell you anything about the actual maximum.

One alternative is to use instead the first-price auction. Now, you still give the item
to the highest reported bid, but the winner must pay their bid. Now the equilibrium of the
induced game isn’t quite so bad, but still really hard to reason about (lots of work goes into
characterizing equilibria of first-price auctions, and it’s basically a complete mess - there’s
not enough information here on a model to see why, but check AGT book for more details).
At minimum at least we can conclude that no one will ever bid above their value (instead

1

2

they would rather bid exactly their value, no matter the other bids), but anything beyond
this is hard to come by.

A third alternative is to use the second-price auction. Now, you again give the item
to the highest reported bid, but the winner pays the second-highest price. For this auction,
there’s an equilibrium that’s actually quite easy to reason about. Observe that if the highest
bid (aside from bidder i) is p−i, then bidder i will win the item and pay p−i if the bid bi ≥ p−i,
and lose the item and pay 0 otherwise. So they want to win if and only if their value exceeds
p−i, and this can be achieved always by submitting a bid of vi. So it is a Nash equilibrium
for everyone to tell the truth in a second-price auction, and the maximum reported bid is
selected (so the maximum actual value is also selected in equilibrium). Actually, telling the
truth is a dominant strategy, discussed below.

So using the single-item auction as an example, we see that algorithms without payments
might be really chaotic, but that algorithms with “the right” payments can induce simple
equilibria and lead to good algorithms (even when we rely on the bidders themselves to tell
their values). The specific notion we saw in the second-price auction is a dominant strategy.

Definition 1. Strategy s is a dominant strategy for player i in a game if for all s′ 6= s
that i could use, and all strategies ~t that the other bidders might use, Pi(s,~t) ≥ Pi(s

′,~t), and
there exists a ~t∗ such that Pi(s,~t

∗) > Pi(s
′,~t∗). Here, Pi(s,~t) denotes the payoff enjoyed by

player i when they use strategy s and the other players use strategies ~t.

It should be clear that if every bidder has a dominant strategy, then it is a Nash equilib-
rium for every bidder to play that strategy (in fact, this is a much stronger property: you
might reasonably not expect bidders to find an arbitrary Nash equilibrium of a game, but
you should reasonably expect them to play dominant strategies if they have one).

1 The Vickrey-Clarke-Groves Auction

The first result we’ll discuss is seminal work of Vickrey, Clarke, and Groves (that contributed
to a Nobel prize for Vickrey). It’s actually a combination of three separate single-author
works, and was phrased very differently than the theorem statement below (they are all
economists). To state the result, we’ll need to be clear about how bidders interact with
payments.

Definition 2. A bidder is quasi-linear if their utility for receiving value v and paying p is
v − p. Bidders always want to maximize their utility.

Theorem 1. Let A be an algorithm that takes as input v1(·), . . . , vn(·) and outputs S1, . . . , Sn
maximizing

∑
i vi(Si) over all partitions of [m]. Then a dominant-strategy truthful mecha-

nism exists that requires only n+1 black-box calls to A, and selects the partition A(v1, . . . , vn).

Let’s parse this. First, we need to define dominant-strategy truthful. This simply means
that telling the truth is a dominant strategy. That is, every bidder prefers to report their
true vi(·) than any other valuation function, no matter what valuation functions the other
bidders report. This, together with the final guarantee, that the allocation is A(v1, . . . , vn)
means that the actual welfare-maximizing allocation is chosen: because the mechanism is

3

dominant strategy truthful, the reported valuations will be the actual valuations. Because
the allocation maximizes welfare on the reported valuations, this means that the actual
welfare-maximizing outcome is chosen. The fact that the mechanism only requires n + 1
calls to A defines its runtime. If A is poly-time, then the mechanism is poly-time too.

Proof. Consider the payment rule where each bidder is charged their externality on the
other bidders. That is, we will charge every bidder the “harm” they cause the others by
existing. More specifically, we look at the total happiness of all other bidders with you
in the picture versus the total happiness of all other bidders without you and charge the
difference. That is, we do the following payments: below, v = 〈v1, . . . , vn〉, and v∗−i =
〈v1, . . . , vi−1, 0, vi+1, . . . , vn〉. We’ll also let Ai(v) denote the set awarded to bidder i on
input v.

Pi(v) =
∑
j 6=i

vj(Aj(v
∗
−i))−

∑
j 6=i

vj(Aj(v)).

Again, this is exactly the difference between everyone else’s utility without you in the
picture versus with you in the picture. Let’s now compute bidder i’s utility for submitting
any bid v′i (we’ll use v′ to denote 〈v1, . . . , vi−1, v′i, vi+1, . . . , vn〉).

Ui(v
′
i, v−i) = vi(Ai(v

′))− Pi(v
′)

= vi(Ai(v
′))−

∑
j 6=i

vj(Aj(v
∗
−i)) +

∑
j 6=i

vj(Aj(v
′)

=
∑
j

vj(Aj(v
′))−

∑
j 6=i

vj(Aj(v
∗
i−1)).

Now let’s look at these two terms. The first term is exactly the total welfare generated
by the algorithm A on bids v′ but evaluated according to the real values v. The second term
is completely out of bidder i’s control: it only depends on bids submitted by other bidders.
So bidder i wants to maximize the first term to maximize their utility. The first term is
clearly maximized when A selects the true welfare-maximizing allocation, which happens
when bidder i submits vi.

At first this seems great! No matter the valuations, as long as we have an algorithm
maximizing welfare, we can turn it into a truthful mechanism maximizing welfare. The
drawback is that for basically any interesting class of valuations, maximizing welfare is NP-
hard. Also unfortunately, the VCG reduction is incompatible with approximation: if unless
A exactly maximizes welfare on every input, the output mechanism isn’t truthful.

2 Truthful Approximation Algorithms

In this section, we’ll consider a (very) special case of valuations and derive a truthful
approximation algorithm. Here, each bidder’s value will be single-minded. That is, for
each i, there exists a special set Si, and vi(S) = Vi if S ⊇ Si, and 0 otherwise. Note that
maximizing welfare is NP-hard by a reduction from independent set, even in this super
special case.

4

Consider any graph G = (V,E). We’ll make a player for each node in V , and an item
for each edge in E. Player i’s interest set Si will be exactly the edges adjacent to them, and
Vi = 1 for all i. Now it should be clear that we can simultaneously give a set P of players
their interest sets if and only if they form an independent set in G. Therefore, maximizing
welfare is equivalent to finding a large independent set. Note also that independent set is
NP-hard to approximate within n1−ε for any ε > 0, so welfare maximization for single-
minded bidders is also NP-hard to approximate within n1−ε (or m1/2−ε) for any ε > 0.

Now, we’ll show a greedy mechanism that is truthful, and guarantees am1/2-approximation.
The mechanism is the following:

� Ask each bidder to report Vi, Si.

� Sort the bidders so that V1/
√
|S1| ≥ V2/

√
|S2| . . .

� Initialize A = ∅ (the set of awarded items). Starting from i = 1, visit bidder i and
declare them a winner if and only if Si ∩A = ∅. If so, update A := A ∪ Si.

� Award each winner their declared interest set Si.

� Charge each winner the minimum Vi they could have reported and still been a winner.

For example, say that the bids are (1, {1}), (1, {1, 2, 3, 4}), (4, {1, 2}), (4, {3, 4}). Then
the bids will be sorted so that the two 4s go first, followed by the two 1s. Both the 4s will
win, the other two won’t. (4, {1, 2}) will pay

√
2, because they will win if and only if they

appear before (1, {1}) in the ordering. (4, {3, 4}) will pay 0, because they would win as long
as they bid at least 0.

Now there are two things we want to prove. First, that the mechanism is actually
truthful. Second, that it gets the desired approximation ratio. We’ll do the approximation
ratio first.

Theorem 2. The greedy algorithm above guarantees a
√
m approximation.

Proof. Let OPT denote the true optimal allocation. For each i that wins, let OPTi = {j ∈
OPT, j ≥ i, Si ∩ Sj 6= ∅}. That is, OPTi is the players in OPT who are blocked by i
(including itself). Clearly, OPT = ∪iOPTi, as everyone not blocked by any i would have
been selected by Greedy. Now we’ll prove that for all winners,

∑
j∈OPTi

Vj ≤
√
m · Vi.

Note that every j ∈ OPTi appears in the greedy order after i, so we have Vj ≤
Vi
√
|Sj |/

√
|Si|. Summing over all j ∈ OPTi, we have:∑

j∈OPTi

Vj ≤ Vi/
√
|Si| ·

∑
j∈OPTi

√
|Sj |.

Using the Cauchy-Schwarz inequality (x · y ≤ |x|2 · |y|2, for x = 〈1, . . . , 1〉 and y =
〈
√
|Sj |〉j∈OPTi), this is: ∑

j∈OPTi

√
|Sj | ≤

√
|OPTi| ·

√ ∑
j∈OPTi

|Sj |.

Finally, observe that every Sj ∈ OPTi intersects Si (by definition). Also, since OPT is an
allocation, we must have Sj ∩Sj′ = ∅ for all j, j′ ∈ OPT . Therefore, we have |OPTi| ≤ |Si|.

5

Again since OPT is an allocation, we have
∑

j∈OPTi
|Sj | ≤ m. Therefore, the RHS above is

upper bounded by
√
|Si| ·

√
m. Plugging back into the first inequality yields that:∑

j∈OPTi

Vj ≤ Vi/
√
|Si| ·

∑
j∈OPTi

√
|Sj |

≤ Vi√
|Si|
·
√
|OPTi| ·

√ ∑
j∈OPTi

|Sj |

≤ Vi√
|Si|
·
√
|Si| ·

√
m

= Vi ·
√
m,

as desired.

Finally, we want to claim that the mechanism is dominant strategy truthful. First,
observe that, no matter what set you report, it is a dominant strategy to report your actual
value for that set (either 0 or Vi). This is because based on the other bidders, the Greedy
ordering induces a minimum bid you can submit (with that set) and still win it. You will
win if and only if you bid above that value. If you report your true value for that set, you
will always be on the correct side (just like second price).

Now, we want to argue that you should always report your true interest set. It’s obvious
you should never report an S that doesn’t contain Si, as this guarantees non-positive utility.
If you report an S that strictly contains Si, then this will only increase the bid you’d need
to make in order to win (because you conflict with more, and because your bid gets divided
by a bigger number). So you both want to bid your true value for the reported set, and
report your true interest set.

To see this last claim more formally, consider all bids aside from your own. If you weren’t
in the picture, then there is some allocation that Greedy would select. Now imagine that
you report the bid (V ′i , S

′
i). Then you will be allocated S′i if and only if your bid winds

up ahead of the first bidder who intersects with S′i. Call this bidder j. Then you will be
allocated if and only if V ′i /

√
|S′i| ≥ Vj/

√
|Sj | ⇔ V ′i ≥ Vj

√
|S′i|/

√
|Sj |. Note that if S′i ⊇ Si,

the RHS can only go up. This is because first, |S′i| ≥ |Si|, and second, the earliest bidder
which intersects S′i can only be earlier. So the price offered to you can only go up as you
report a set strictly containing Si, and doing so is dominated.

3 Lavi-Swamy Reduction

The reduction is based on tools we’ve seen throughout class, LP relaxations and rounding.
The high-level approach is the following. First, we’ll define a class of mechanisms that are
“VCG-like,” where similar reasoning to last class lets us turn algorithms of a certain form
into DST mechanisms.

3.1 Maximal-In-Range and Maximal-In-Distributional-Range

Let’s first recall what the VCG reduction did. We took as input any algorithm A that on in-
put v selected the welfare-maximizing partition A(v). That is, A(v) maximizes

∑
i vi(Ai(v))

6

over all partitions. Then, we charged each bidder their “externality,” how much the other
bidders’ welfare went down due to their presence:

∑
j 6=i vj(Aj(v1, . . . , vi−1, 0, vi+1, . . . , vn))−∑

j 6=i vj(Aj(v)). We then observed that bidder i’s utility (value minus price) turned out
to be exactly the total welfare minus a term completely out of their control, so bidder
i always wants to maximize the welfare (which can be achieved by reporting their true
value). Finally, we concluded that because A maximized welfare on all inputs, that VCG
also maximizes welfare on all inputs.

Now we make a key observation: with the VCG payment rule, for any algorithm A,
the resulting mechanism is DST if and only if for all v, v′ where vj = v′j for all j 6= i,∑

j vj(Aj(v)) ≥
∑

j vj(Aj(v
′)). That is, given that we’re going to run algorithm A, and the

other bidders have already reported v−i, welfare is maximized when bidder i reports value
vi. This might seem like an extremely natural property that all approximation algorithms
should have, but surprisingly it’s not (see homework). But if we use an algorithm A with
this property, then the VCG mechanism using A is still DST. Only the last sentence in the
paragraph above isn’t necessarily true: A may no longer maximize welfare on all inputs.

As an example, consider A that always gives all items to the same bidder. Then the
VCG mechanism essentially becomes a second-price auction for the grand bundle [m] of
all items, and is DST. But it does a horrible job of maximizing welfare because it never
considers splitting the items.

Such mechanisms are called maximal-in-range: there exists some set S of possible al-
locations, and AS(v) outputs the best allocation in S (the one that maximizes welfare for
v). An extension of these ideas is called maximal-in-distributional-range and instead lets S
be a set of distributions over allocations (or randomized allocations). Again, AS(v) outputs
the welfare-maximizing distribution in S.

For example, maybe S contains all distributions that pick two different bidders for each
item, then allocates each item independently to one of the two bidders uniformly at random.

Then AS(v) would find, over all such m(n2) (randomized) allocations the one that maximizes
expected welfare (formally: maximizes E[

∑
i vi((AS)i(v))]). I’m not claiming that this is

an interesting class of distributions to optimize over, but it fits the definition.
The remaining goal of this lecture will be to design a maximal-in-distributional-range

mechanism that guarantees a good approximation.

3.2 The Configuration LP

Our maximal-in-distributional-range algorithm will use a specific LP relaxation (also used
in many other problems) called the configuration LP. It is as follows. Below, think of xi,S
as the fraction of set S awarded to bidder i.

7

maximize
∑
i,S

xi,Svi(S)

subject to
∑
i

∑
S3j

xi,S ≤ 1 ∀j ∈ [m]

∑
S

xi,S ≤ 1 ∀i ∈ [n]

xi,S ≥ 0 ∀i ∈ [n], S ⊆ [m]

First observe that this LP is indeed a relaxation: for any allocation S1, . . . , Sn, we can
set xi,Si = 1, and all other variables equal to zero. Observe also that, unfortunately, it has
exponentially many variables. That’s a shame, so we’ll have to be clever in order to solve
the LP in poly-time. Fortunately, there aren’t too many constraints, so the dual has few
variables and exponentially many constraints - this is starting to sound closer to something
we can solve. The dual is as follows:

minimize
∑
i

ui +
∑
j

pj

subject to ui ≥ vi(S)−
∑
j∈S

pj ∀i, S

ui, pj ≥ 0

We can solve the dual as long as we can get a poly-time separation oracle. Whether
or not this is possible depends exactly on how each vi(·) is represented. We’ll assume its
represented in a way so that we can evaluate a demand query. That is, we can take as
input a vector of price p1, . . . , pm and output arg maxS{vi(S)−

∑
j∈S pj}. Notice that this

is bidder i’s favorite set if the items are priced at p1, . . . , pm. It’s normally considered a
reasonable kind of query, since bidder i themselves is presumably capable of picking their
favorite set at some prices in poly-time (philosophical aside: if not, then maybe you should
redefine vi to match whatever bidder i would select?).

Observation 1. With demand query access to each vi(·), we can implement a poly-time
separation oracle.

Proof. Simply execute a demand query for each vi at prices ~p. If ui exceeds the resulting
vi(S)−

∑
j∈S pj , then all constraints for bidder i are satisfied. If not, we’ve explicitly found

a violated constraint.

For the rest of this class, we’ll assume demand query access to the valuations, and
therefore we can get a separation oracle for the dual and solve the configuration LP in
poly-time. Note that it’s not trivial to take a solution to the dual and transform it into
a solution for the primal, but it’s not too hard (it uses complementary slackness). Notice

8

though that because the primal only has n+m constraints, there always exists an optimal
solution where only n+m coordinates are non-zero (this is because there always exists an
optimal solution that is a corner, and all but n + m tight constraints at the corner are
setting some variable to zero). So now that we can solve the LP relaxation, we have to
figure out what to do with it.

3.3 Rounding the Configuration LP

Definition 3. We say that a rounding algorithm A verifies an integrality gap of c ≤ 1 for
the configuration LP if it takes as input v and outputs a (deterministic) allocation such that∑

i vi(Ai(v)) ≥ c ·ConfigOPT(v), where ConfigOPT(v) is the fractional optimum of the
configuration LP.

Proposition 3. [Lavi/Swamy 2005] Let A verify an integrality gap of c for the configuration
LP. Then for any fractional solution x to the configuration LP with k non-zero coordinates,
one can decompose c ·x into a distribution over integral allocations in poly(n,m, k) black-box
calls to A (and poly(n,m, k) overhead).

Proof. (Note: this was omitted in lecture) Strongly recommend visiting Chapter 12 of
the cited textbook for this since there are some subtleties, but the main ideas are below).
Consider the following LP, which tries to write c·x as a convex combination of (exponentially
many) integral allocations (let I denote the set of integral allocations, which is finite):

minimize
∑
y∈I

λy

subject to
∑
y∈I

λyx
y
i,S = c · xi,S ∀(i, S) such that xi,S > 0

∑
y∈I

λy ≥ 1 (this constraint might seem silly, but it’s helpful to keep the dual clean)

λy ≥ 0

Quickly observe that we don’t need to enforce the constraint
∑

y∈I λyx
y
i,S = 0 when

xi,S = 0, we can simply ignore any integral allocations that award set S to bidder i when
xi,S = 0 (e.g. hard-code such λy = 0, or just remove these variables entirely). Finally, also
observe that if we find a solution to this LP where

∑
y∈I λy = 1, this is exactly a convex

combination over integral allocations. So our goal is to find such a solution, via the dual:

maximize z +
∑

(i,S),xi,S>0

cxi,S · wi,S

subject to z +
∑

(i,S),xi,S>0

xyi,Swi,S ≤ 1 ∀y ∈ I

z ≥ 0

9

We now want to claim that we can solve the dual in the desired runtime, given black-box
access to A, and that the value of the dual must be 1. First, observe that z = 1, wi,S = 0
for all (i, S) is a valid dual solution and has value 1. So the dual has value at least one (this
is why it was helpful to write the superfluous constraint in the primal, although we could
have drawn the same conclusions without it and a little extra reasoning. Also observe that
the dual has only k + 1 variables, so if we can get a separation oracle, we can solve it in
time poly(k).

Now we want to show that the dual has no feasible solutions with value > 1. Assume
for contradiction that (w, z) was such a solution. Then consider running algorithm A on
input valuations with vi(S) = wi,S . Then this produces some integral allocation y with∑

i,S x
y
i,Swi,S ≥ c

∑
i,S xi,Swi,S > 1− z. The last inequality follows from hypothesis that we

started with a feasible solution of value > 1. But now we can rearrange this into a violated
constraint in the dual, and therefore the solution was in fact not feasible.

There are some subtleties this time for recovering the optimal primal from the optimal
dual, but we’ll again omit this. So we can again recover a solution to the primal with only
k integral allocations, and this is the convex combination we desire.

3.4 Verifying the Integrality Gap

Finally, we’ll observe (without proof, it’s nearly identical to the proof of Theorem 2 —
check the cited book chapter for a proof) that the same greedy algorithm from Theorem 2
verifies an integrality gap of 1/

√
2m. That is, on input v, sort all (i, S) in decreasing order

of vi(S)/
√
|S|, then greedily assign sets that don’t conflict (but now two sets conflict if

they’re of the same bidder as well).

3.5 Putting everything together

So the complete picture looks like this:

1. Let A denote the algorithm that decomposes a point 1√
2m
· x, where x is feasible for

the configuration LP into a distribution over integral allocations. This is based on the
greedy algorithm, plugged through Proposition 3.

2. Let S denote the set of all distributions that A might ever output on input x, where
x is feasible for the configuration LP. Let B be the algorithm that on input v, solves
the configuration LP, then runs A to get a distribution over integral allocations. Note
that B finds the welfare maximizing distribution in S.

3. Use the VCG payments with maximal-in-distributional-range algorithm B. This is a
DST mechanism. Observe that it guarantees a 1√

2m
-approximation.

4 An O(
√
m)-approximation for subadditive buyers

First, we’ll provide an O(
√
m)-approximation for subadditive buyers due to [?]. Recall that

a valuation function is subadditive if v(X ∪ Y) ≤ v(X) + v(Y) for all X,Y . Note that this
implies that v(X) ≤

∑
i∈X v({i}).

10

Consider the following algorithm: query each buyer i for vi(M), and vi({j}) for all items
j. Then, do the following:

� Let i∗ := arg maxi{vi(M)}.

� Create a bipartite graph with bidders on the left and items on the right. Put an edge
between node i and j of weight vi({j}) for all i, j. Find the max-weight matching in
this graph, and let j(i) denote the item matched to bidder i in this matching (or null
if no item is given to bidder i).

� If vi∗(M) ≥
∑

i vi(j(i)), then give all items to bidder i∗. Else, give each bidder i the
item j(i).

Theorem 4 ([?]). The algorithm above guarantees an O(
√
m)-approximation whenever all

valuations are subadditive.

Proof. Let S1, . . . , Sn denote the welfare-maximizing partition. Further relabel the bidders
so that |S1| ≥ . . . ≥ Sn. Let i′ denote the smallest i such that Si >

√
m (or null if no such

i exists). There are two cases to consider.
First, maybe

∑
i≤i′ vi(Si) ≥ OPT/2. Note that i′ ≤

√
m (as each i ≤ i′ receives

√
m

items). Therefore, there exists an i ≤ i′ such that vi(Si) ≥ OPT/(2
√
m). Therefore,

vi∗(M) ≥ vi(M) ≥ vi(Si) ≥ OPT/(2
√
m), and our algorithm achieves at least vi∗(M), so

we get our approximation.
Next, maybe

∑
i≤i′ vi(Si) < OPT/2. Then

∑
i>i′ vi(Si) ≥ OPT/2. Now we wish to

invoke subadditivity: we know that vi(Si) ≤
∑

j∈Si
vi({j}). Therefore, for all i, there

certainly exists a j ∈ Si such that vi({j}) ≥ vi(Si)/|Si|. For i > i′, this further means
there exists a j ∈ Si such that vi({j}) ≥ vi(Si)/

√
m. Therefore, as the Sis are disjoint,

there exists a matching of bidders to items guaranteeing welfare ≥
∑

i>i′ vi(Si)/
√
m ≥

OPT/(2
√
m).

Observation 2. The above algorithm is maximal-in-range. Therefore, it can be turned into
a truthful auction.

Proof. Observe that the algorithm considers every allocation that is either a matching (gives
each bidder at most one item) or awards all items to the same bidder. The best allocation
from this collection is selected, therefore it is maximal-in-range.

5 Approximation Algorithms for XOS

Now, we’ll provide an algorithm for XOS due to [?] that uses polynomially many demand
queries and achieves a 1 − 1/e approximation with respect to the optimal welfare. Even
more precisely, the guarantee is 1 − (1 − 1/n)n, which is tight. Note that this is just
an approximation algorithm (it’s not truthful). Developing a truthful mechanism with
comparable guarantees is a major open problem (in fact, the best deterministic, truthful
mechanism known achieves only a

√
m-approximation, and is described in the previous

section).
The algorithm will proceed by first solving the configuration LP, using polynomially

many demand queries. However, we still need to round the fractional solution to a feasible

11

one. The rounding we’ll discuss is oblivious. This type of rounding uses only the solution
to the configuration LP (the xi(S)’s) but not the vi(·)’s. Let’s first see how to get a
1− (1/2)2 = 3/4 approximation for n = 2.

� Let xi(S) be the fractional solution proposed by the LP. Let xij :=
∑

S3j xi(S).

� Draw a random S according to the distribution x1(·). Draw a random T according to
the distribution x2(·).

� If j ∈ S \ T , award item j to bidder 1. If j ∈ T \S, award j to bidder 2. If j /∈ S ∪ T ,
award j arbitrarily (or to no one).

� If j ∈ S ∩ T , award j randomly to bidder 1 with probability
x2j

x1j+x2j
(and bidder 2

with the remaining probability).

Intuitively, the idea is to try and just allocate the two bidders independently. The
problem is that they may both “ask for” the same item. In this case, we randomly award
the item, biased towards the bidder who asks for the item least often. To prove that the
algorithm works, we’ll need the following lemma:

Lemma 5. Let v(·) be an XOS function. Let X be a randomly drawn set satisfying Pr[j ∈
X] ≥ p for all j ∈ S. Then E[v(X)] ≥ p · v(S).

Proof. We know that because v(·) is XOS, that there exist some additive function a(·)
satisfying a(S) = v(S), and v(T) ≥ a(T) for all T ⊆ M . Now, to conclude the proof,
observe: E[a(X)] =

∑
j Pr[j ∈ X] · a({j}) ≥ p · a(S) = p · v(S).

Theorem 6 ([?]). The above described rounding algorithm guarantees a 3/4-approximation.

Proof. Suppose bidder 1 draws set S from their randomized rounding, and consider any
j ∈ S. We’ll show that bidder 1 keeps item j with probability at least 3/4 (in expectation
over the randomness of the set T drawn by bidder 2, and the randomness of who wins the
tiebreaker). We can then directly apply Lemma 5 to claim that bidder 1 gets value at least
(3/4)v(S) whenever she is randomly assigned set S, and therefore her total value is at least
3/4 of what she achieves in the fractional solution.

Now let’s compute the probability that bidder 1 keeps item j ∈ S. Observe that in
order for bidder 1 to lose item 1, first bidder 2 needs to draw a T 3 j. This happens with
probability x2j . Independently of this, bidder 1 needs to lose the tiebreaker. This happens
with probability

x1j

x1j+x2j
. So the total probability that bidder 1 loses item j is

x1jx2j

x1j+x2j
. We

want to see how big this term can possibly be, subject to the constraint xij ∈ [0, 1] and
x1j + x2j ≤ 1.

Simple calculus confirms that this is maximized when x1j = x2j = 1/2 and yields a
value of 1/4. Therefore, bidder 1 keeps item j with probabilty at least 3/4 and the theorem
follows.

The algorithm for n > 2 is a bit more complicated, and requires going through a few
thought experiments. We will not give a full proof of the bound 1− (1− 1/n)n, but instead

12

give a proof of the bound 1− 1/e (which is the same as n→∞). For a proof of the exact
bound, see [?, ?].

First, let N be an integer such that 1/N divides xij for all i, j. Such an N certainly
exists as long as all values vi(S) are rational. Now, consider the following flawed experiment
for each item j:

� Each bidder i gets xijN biased coins, which come up heads independently with prob-
ability 1/N .

� Each bidder independently flips all of their coins, and puts any that come up heads
into the bag Bj .

� A uniformly random coin is drawn from the bag. The owner of that coin gets item j.

Lemma 7. The above rounding algorithm awards item j to bidder i with probability at least
(1− 1/e)xij.

Proof. Observe that the bag is empty with probability (1 − 1/N)N ≤ 1/e. Therefore,
someone wins the item with probability at least 1− 1/e. By symmetry, each coin wins the
item with probability at least (1− 1/e)/N . Therefore, a bidder with xijN coins wins with
probability at least (1− 1/e)xij , as desired.

Of course, there is a problem with plugging the above “rounding” into the previous
approach: it doesn’t make any reference to the initial S drawn from xi(·). As such, we cannot
use Lemma 5. All we can claim is that bidder i gets item j with probability (1 − 1/e)xij ,
whereas we want to say that bidder i gets item j with probability (1− 1/e) conditioned on
drawing S 3 j from xi(·). The problem is that we haven’t changed the rounding based on
S at all.

To fix this, we would like to do the following. First, we want to preserve the distribution
of the number of coins that bidder i puts into the bag. But, we’d like to make the distribution
no longer independent of S. Rather, we would like to make it so that i only puts coins into
bag j when j ∈ S. To do this, consider the following:

� The probability that bidder i puts ` coins into bag j is
(xijN

`

)
(1/N)`(1− 1/N)xijN−`.

� In particular, the probability that bidder i puts 0 coins into bag j is (1− 1/N)xijN ≥
1− xij .

� As such, we can modify the distribution of coins into the bag as follows:

– First draw S according to xi(·).
– If j /∈ S, put no coins into the bag.

– If j ∈ S, put exactly ` coins into the bag with probability 1
xij

(xijN
`

)
(1/N)`(1 −

1/N)xijN−`, and put 0 coins into the bag with the remaining probability (note
that this remaining probability is indeed non-negative, since bidder i puts > 0
coins into the bag with probability that was shown above to be ≤ xij). The
factor 1

xij
is needed to normalize the formula for the probability of putting `

coins into the bag, since xij is the probability that bidder i is assigned S 3 j.

13

Theorem 8 ([?]). The above described rounding algorithm guarantees a (1−1/e)-approximation.

Proof. We’ll again show that whenever bidder 1 draws set S from their randomized round-
ing, in expectation over the randomness of all other bidders drawing their sets, and the
randomness on who wins the tiebreaker, bidder 1 keeps item j with probability at least
1 − 1/e, for all j ∈ S. We can then directly apply Lemma 5 to claim that bidder 1 gets
value at least (1 − 1/e)v(S) whenever she is randomly assigned set S, and therefore her
total value is at least 1− 1/e of what she achieves in the fractional solution.

To see this, observe that we indeed kept the distribution of coins in the bag identical
for each bidder. As such, bidder i indeed wins item j with probability at least (1− 1/e)xij .
However, we have also modified the distribution so that bidder i puts a coin in the bag only
when j ∈ S. Therefore, bidder i must win item j conditioned on j ∈ S with probability at
least 1− 1/e.

Bibliography

1. Algorithmic Game Theory. Nisan, Roughgarden, Tardos, Vazirani (eds.), Cambridge
University Press 2007.

	The Vickrey-Clarke-Groves Auction
	Truthful Approximation Algorithms
	Lavi-Swamy Reduction
	Maximal-In-Range and Maximal-In-Distributional-Range
	The Configuration LP
	Rounding the Configuration LP
	Verifying the Integrality Gap
	Putting everything together

	An O(m)-approximation for subadditive buyers
	Approximation Algorithms for XOS

